

AVALIAÇÃO DOS TEORES DE EXTRATO ETÉREO E NUTRIENTES DIGESTÍVEIS TOTAIS DE DIFERENTES GENÓTIPOS DE SORGO

João Vitor Araújo Ananias*¹
Daniel Ananias de Assis Pires²
Marielly Maria Almeida Moura²
Renê Ferreira Costa²
Otaviano Souza Pires Neto²
Elaine Bevilacqua Eleuterio¹

Introdução

Dentre as espécies forrageiras, o sorgo se destaca devido à sua alta produtividade e resistência hídrica, podendo até mesmo fornecer uma rebrota, o que aumenta seu potencial para a produção de alimentos. Com isso, surgiu também genótipos de sorgo que possuem além da elevada produção, uma boa qualidade nutricional que é muito importante para a nutrição animal.

Objetivou-se, com este trabalho, avaliar as características nutricionais de extrato etéreo e nutrientes digestíveis totais de diferentes genótipos de sorgo para potencial de produção de silagem.

Materiais e Métodos

O experimento foi conduzido nas dependências da EMBRAPA - Milho e Sorgo. Foram utilizados dezessete genótipos de sorgos, sendo nove híbridos (2012F47504, 2012F47503, 2012F47525, 2012F47483, 2012F47484, 2012F47475, 2012F47524, 2012F47523, 2012F47515) obtidos do cruzamento entre três fêmeas graníferas (BRS 008B, BR 007B, CMSXS222B) e três machos forrageiros (201191, Santa Elisa, 201187025), adicionalmente a dois materiais comerciais: BRS 610 e Volumax. Cada genótipo formou um tratamento totalizando 17 genótipos e 3 repetições (blocos), totalizando 51 unidades experimentais.

¹ Estudantes do curso de Medicina Veterinária das Faculdades Integradas do Norte de Minas (FUNORTE), Montes Claros, MG, Brasil.

² Professores das Faculdades Integradas do Norte de Minas (FUNORTE), Montes Claros, MG, Brasil.

^{*}Autor para correspondência: joaovitor.ananias@yahoo.com.br

A avaliação do extrato etéreo foi determinada de acordo (AOAC, 1995) e os nutrientes digestíveis totais (NDT) utilizando-se as equações propostas pelo NRC (2001). Os dados obtidos no campo foram submetidos à análise de variância, segundo um delineamento em blocos ao acaso com três repetições por meio do programa SISVAR (FERREIRA, 2011) e quando a mesma apresentou significância para o teste de "F". As médias foram comparadas pelo teste Scott-Knott ao nível de 5% de probabilidade, conforme o modelo estatístico a seguir:

$$Y_{ik} = \mu + G_i + B_k + e_{ik}$$

Em que:

Y_{ik} = Observação referente ao genótipo i e repetição k;

 μ = Média geral;

G_i = Efeito do genótipo i, com i= 1, 2, 3... 17;

 B_k = efeito de bloco k, onde k = 1, 2 e 3;

 e_{ik} = O erro experimental associado aos valores observados (Y_{ik}) que por hipótese tem distribuição normal com média zero e variância σ^2 .

Resultados

Houve diferença entre os genótipos avaliados para os teores de extrato etéreo que variaram de 1,45 a 4,18% (p<0,05) (Tabela 1). O genótipo Volumax e o híbrido experimental 2012F47524 apresentaram teores de EE superiores aos demais. De acordo com o NRC (2001), na maioria das situações, o total de gordura na dieta para ruminantes não deve ultrapassar de 6 a 7% na MS, pois podem ocorrer reduções na fermentação ruminal, na digestibilidade da fibra e na taxa de passagem, estando todos os genótipos avaliados nesse experimento abaixo desse limite.

Tabela 1 - Teores médios de extrato etéreo (EE), nutrientes digestíveis totais (NDT) de dezessete genótipos de sorgo.

geneupee de cerge.		
Genótipo	EE (%) ¹	NDT (%) ¹
201191	2,54 ^C	52,37 ^A
Santa Elisa	2,61 ^C	52,88 ^A
BRS008B	2,23 ^C	53,71 ^A
2012F47504	3,14 ^B	52,84 ^A
2012F47503	3,20 ^B	54,22 ^A
BR007B	3,15 ^B	53,65 ^A
2012F47525	1,89 ^D	52,04 ^A
CMSXS222B	2,55 ^C	54,31 ^A
2012F47483	2,89 ^B	52,48 ^A

2012F47484	2,53 ^C	54,56 ^A
2012F47475	2,64 ^C	54,02 ^A
201187025	2,64 ^C	51,51 ^A
2012F47524	3,83 ^A	53,60 ^A
2012F47523	1,45 ^D	50,73 ^A
2012F47515	2,23 ^C	49,92 ^A
Volumax	4,18 ^A	52,83 ^A
BRS610	1,94 ^D	52,73 ^A
Média	-	52,85
CV (%)	14,42	3,53

Médias seguidas por letras distintas, na coluna, diferem entre si pelo teste de Scott–Knott ao nível de 5% de probabilidade. CV = Coeficiente de variação. ¹Dados expressos na matéria seca.

Os valores de nutrientes digestíveis totais para os genótipos avaliados foram semelhantes entre si (p>0,05), sendo a média de 52,85 respectivamente.

Conclusão

O genótipo 201191 e os híbridos experimentais 2012F47525, 2012F47484 e 2012F47515 foram superiores aos demais, sendo os materiais com melhor potencial para produção de silagem.

Referências

AOAC. ASSOCIATION OF OFFICIAL ANALITICAL CHEMISTS. **Pepsin digestibility of animal protein feeds**. In: Official methods of analysis of AOAC international 16th ed. Arlington, Virginia: Patricia Cunniff, 1995. Cap.4. p.15-16.

NRC. National Research Council. **Nutrient requeriments of dairy cattle**. 7.rev.ed. Washinton, D.C.: 2001. 381p.

FERREIRA, D. F. SISVAR: a computer statistical analysis system. **Ciência e Agrotecnologia**, v. 35, n.6, p. 1039-1042, 2011.